Member-only story
I. Data Import and Manipulation:
1. Read CSV:
data <- read.csv("file.csv")
2. Read Excel:
library(readxl); data <- read_excel("file.xlsx")
3. Subset Data:
subset_data <- data[data$condition == "A", ]
4. Select Columns:
selected_cols <- data[, c("col1", "col2")]
5. Filter Rows:
filtered_data <- data[data$age > 18, ]
6. Group by and Summarize:
library(dplyr); summarised_data <- data %>% group_by(category) %>% summarise(mean_value = mean(value))
7. Merge Data:
merged_data <- merge(data1, data2, by = "common_column")
8. Convert to Date:
data$date <- as.Date(data$date_string, format="%Y-%m-%d")
9. Pivot Data:
library(tidyr);
pivoted_data <- spread(data, key = "key_col", value = "value_col")
10. Reshape Data:
library(reshape2);
melted_data <…