Member-only story
Joining data in Pandas is a crucial skill for combining information from different sources. Here’s everything you need to know about Pandas joins:
1. Types of Joins:
- Inner Join (
pd.merge()
): Returns only the rows with matching keys in both DataFrames.
pd.merge(df1, df2, on='key', how='inner')
- Left Join (
pd.merge()
): Returns all rows from the left DataFrame and the matched rows from the right DataFrame.
pd.merge(df1, df2, on='key', how='left')
- Right Join (
pd.merge()
): Returns all rows from the right DataFrame and the matched rows from the left DataFrame.
pd.merge(df1, df2, on='key', how='right')
- Outer Join (
pd.merge()
): Returns all rows when there is a match in either the left or right DataFrame.
pd.merge(df1, df2, on='key', how='outer')
2. Key Columns:
- Specify the columns on which the DataFrames should be joined using the
on
parameter. - For joining on multiple columns, pass a list of column names to the
on
parameter.
3. Suffixes:
- Use the
suffixes
parameter to add custom…