Member-only story

Mastering Pandas DataFrames: Seamless Data Integration with Joins

btd
3 min readNov 14, 2023

--

Photo by Trung Bui on Unsplash

Joining data in Pandas is a crucial skill for combining information from different sources. Here’s everything you need to know about Pandas joins:

1. Types of Joins:

  • Inner Join (pd.merge()): Returns only the rows with matching keys in both DataFrames.
pd.merge(df1, df2, on='key', how='inner')
  • Left Join (pd.merge()): Returns all rows from the left DataFrame and the matched rows from the right DataFrame.
pd.merge(df1, df2, on='key', how='left')
  • Right Join (pd.merge()): Returns all rows from the right DataFrame and the matched rows from the left DataFrame.
pd.merge(df1, df2, on='key', how='right')
  • Outer Join (pd.merge()): Returns all rows when there is a match in either the left or right DataFrame.
pd.merge(df1, df2, on='key', how='outer')

2. Key Columns:

  • Specify the columns on which the DataFrames should be joined using the on parameter.
  • For joining on multiple columns, pass a list of column names to the on parameter.

3. Suffixes:

  • Use the suffixes parameter to add custom…

--

--

btd
btd

No responses yet