Member-only story
I. Characteristics of Outliers
II. Detecting Outliers:
1. Visual Inspection:
a. Scatter Plots
b. Histograms
c. Box Plots
d. Violin Plots
e. Residual Analysis
f. Leverage-Residual Plot
g. Cook's Distance
h. Visualizing Removal and Transformation
2. Summary Statistics
3. Z-Score
4. Interquartile Range (IQR)
5. Tukey's Fences
III. Addressing Outliers:
1. Remove Outliers:
a. Z-Score Method
b. Cook's Distance
c. Tukey's Fences
d. IQR Method
e. Visual Inspection
2. Transform Data:
a. Log Transformation
b. Square Root Transformation
c. Box-Cox Transformation
d. Rank Transformation
e. Winsor-Mean Transformation
f. Quantile Transformation
3. Winsorizing
4. Imputation:
a. Mean, Median, Mode Imputation
b. Constant Imputation
c. Regression Imputation
d. K-Nearest Neighbors Imputation
e. Interpolation Imputation
f. Random Imputation
5. Robust Statistics:
a. Median
b. Robust Standard Deviation (MAD)
c. Robust Regression (RANSAC)
d. Trimmed Mean and Winsorized Mean
e. Huber's T-Statistic
f. Percentile Absolute Deviation (PAD)
g. Tukey's Biweight Midvariance
h. Quantile Regression
6. Binning
7. Modeling Techniques:
a. Robust Regression
b. Quantile Regression
c. Support Vector Machines (SVM)
d…