Member-only story
Many of the concepts and tasks in Natural Language Processing (NLP) can be accomplished using Python and R as well. Here’s a brief overview of how you can perform some common NLP tasks in R:
1. Tokenization:
Tokenization in R can be done using the tokenize_words
function from the tokenizers
package.
# Tokenization
library(tokenizers)
text <- "Natural Language Processing is fascinating!"
tokens <- unlist(tokenize_words(text))
print(tokens)
2. Stop Words Removal:
Stop words removal can be achieved using the tm
package in R.
# Stop Words Removal
library(tm)
text <- "Natural Language Processing is fascinating!"
corpus <- Corpus(VectorSource(text))
corpus <- tm_map(corpus, content_transformer(tolower))
corpus <- tm_map(corpus, removePunctuation)
corpus <- tm_map(corpus, removeNumbers)
corpus <- tm_map(corpus, removeWords, stopwords("en"))
filtered_text <- unlist(sapply(corpus, as.character))
print(filtered_text)
3. Stemming and Lemmatization:
Stemming and lemmatization can be done using the tm
and textstem
packages.
# Stemming and Lemmatization
library(textstem)
text <- "Natural Language Processing is…