Member-only story

Mastering R: 75 Different Ways for Detecting and Handling Outliers

btd
8 min readDec 14, 2023

--

Handling outliers is an essential step in data analysis to ensure that extreme values do not unduly influence your results. In R, there are various methods to handle outliers.

1. Winsorizing:

  • Replace extreme values with values at a certain percentile.
your_data[which(your_data < quantile(your_data, p = 0.01))] <- quantile(your_data, p = 0.01)
your_data[which(your_data > quantile(your_data, p = 0.99))] <- quantile(your_data, p = 0.99)

2. Truncate:

  • Set a threshold and truncate values beyond that threshold.
threshold <- 3
your_data[your_data > threshold] <- threshold

3. Log Transformation:

  • Apply a log transformation to reduce the impact of extreme values.
log_data <- log(your_data + 1)  # Add 1 to handle zero values

4. Square Root Transformation:

  • Similar to log transformation, use the square root transformation.
sqrt_data <- sqrt(your_data)

5. Box-Cox Transformation:

  • Use the Box-Cox transformation to stabilize variance.

--

--

btd
btd

No responses yet