I. Overview of apply(lambda)
:
The apply(lambda)
function in pandas is a versatile and powerful tool that is used for applying a function along the axis of a DataFrame or Series. It is a fundamental part of data manipulation and analysis in pandas. Here's an overview of the apply(lambda)
function and why you might want to use it:
DataFrame.apply(func, axis=0, raw=False, result_type=None, args=(), **kwds)
func
: The function to apply to each column or row.apply()
andlambda
are often used together.- It is not limited to using
lambda
functions; you can pass any function toapply()
, whether it's a built-in function, a user-defined function, or a lambda function. axis
: Specifies whether the function should be applied along columns (axis=0
) or rows (axis=1
).raw
: IfTrue
, the function receives the data as a NumPy array. IfFalse
(default), the function receives a Series for each column or row.result_type
: Specifies the type of the result. It can be 'expand', 'reduce', or 'broadcast'.args
: Additional positional arguments passed to the function.