Imputation techniques in R can be classified into various categories, ranging from basic to advanced methods. Here’s a list of some common imputation techniques along with sample R code:
I. Basic Imputation Techniques:
1. Mean/Median/Mode Imputation:
- Description: Replace missing values with the mean, median, or mode of the observed values.
# Mean imputation
data$variable[is.na(data$variable)] <- mean(data$variable, na.rm = TRUE)
# Median imputation
data$variable[is.na(data$variable)] <- median(data$variable, na.rm = TRUE)
# Mode imputation (using a custom function)
mode <- function(x) {
ux <- unique(x)
ux[which.max(tabulate(match(x, ux)))]
}
data$variable[is.na(data$variable)] <- mode(data$variable)
2. Complete Case Analysis:
- Description: Remove rows with missing values.
data <- na.omit(data)
II. Intermediate Imputation Techniques:
3. Linear Regression Imputation:
- Description: Predict missing values using a linear regression model.
- Assuming you have a dataset named
data
with a variable…