Cheat Sheet for Data Manipulation Functions in Python

btd
4 min readNov 11, 2023

Data manipulation is a crucial aspect of data science, and Python provides several libraries and functions to facilitate this process. Here’s a list of important functions and methods primarily used for data manipulation in Python:

1. Pandas Library:

  • pandas: A powerful library for data manipulation and analysis.
  • DataFrame(): Creates a two-dimensional labeled data structure.
  • Series(): Creates a one-dimensional labeled array.
  • read_csv(), read_excel(), read_sql(): Reads data from different file formats or databases.
  • head(), tail(): Displays the first or last n rows of a DataFrame.
  • info(): Provides a concise summary of a DataFrame.
  • describe(): Generates descriptive statistics of a DataFrame.
  • shape: Returns the dimensions (rows, columns) of a DataFrame.
  • columns: Returns the column labels of a DataFrame.
  • loc[], iloc[]: Accesses a group of rows and columns by label or integer position.
  • drop(): Removes specified rows or columns from a DataFrame.
  • fillna(): Fills missing values in a DataFrame.
  • groupby(): Groups data based…

--

--

btd
btd

No responses yet