Data manipulation is a crucial aspect of data science, and Python provides several libraries and functions to facilitate this process. Here’s a list of important functions and methods primarily used for data manipulation in Python:
1. Pandas Library:
pandas
: A powerful library for data manipulation and analysis.DataFrame()
: Creates a two-dimensional labeled data structure.Series()
: Creates a one-dimensional labeled array.read_csv()
,read_excel()
,read_sql()
: Reads data from different file formats or databases.head()
,tail()
: Displays the first or last n rows of a DataFrame.info()
: Provides a concise summary of a DataFrame.describe()
: Generates descriptive statistics of a DataFrame.shape
: Returns the dimensions (rows, columns) of a DataFrame.columns
: Returns the column labels of a DataFrame.loc[]
,iloc[]
: Accesses a group of rows and columns by label or integer position.drop()
: Removes specified rows or columns from a DataFrame.fillna()
: Fills missing values in a DataFrame.groupby()
: Groups data based…