Member-only story
Data exploration is a crucial step in understanding and preparing your data for analysis. In Python, you can perform data exploration using various libraries and tools. Here’s a list of common libraries and techniques you can use for data exploration:
1. Import Data:
pandas: Use the read_csv()
, read_excel()
, or other data reader functions to import your data.
2. Overview of Data:
head()
: View the first few rows of your dataset.info()
: Display the data types and missing values.describe()
: Get summary statistics for numerical columns.
3. Data Cleaning:
isnull()
: to see if there is any null and missing valuesdropna()
: Remove rows with missing values.fillna()
: Fill missing values with specified values.duplicated()
: Check for and remove duplicate rows.drop()
: drop duplicates
4. Data Visualization:
matplotlib
, seaborn
, plotly
, or boke
h: Create a variety of plots and charts, including histograms, bar plots, scatter plots, and heatmaps to visualize your data.