Member-only story
In this comprehensive exploration, we delve into various natural language processing (NLP) models, shedding light on their underlying processes through with illustrations.
1. Bag-of-Words (BoW):
- The Bag-of-Words (BoW) model is a simple and widely used technique in natural language processing (NLP) for representing text data.
- It treats a document as an unordered set of words, disregarding grammar and word order, and represents the document by counting the frequency of each word.
Document
│
▼
┌─────────────┐
│ Token 1 │
└─────────────┘
│
▼
┌─────────────┐
│ Token 2 │
└─────────────┘
│
...
│
▼
┌─────────────┐
│ Token N │
└─────────────┘
│
▼
┌─────────────┐
│ BoW Vector│
└─────────────┘
Document 1: "This is a simple example."
Document 2: "Another example of Bag-of-Words."
Tokenization:
["This", "is", "a", "simple", "example", "Another", "example", "of", "Bag-of-Words"]
Vocabulary:
["This", "is", "a", "simple", "example", "Another", "of", "Bag-of-Words"]
Word Frequency Count (Document-Term Matrix):
["This", "is", "a", "simple", "example", "Another", "of", "Bag-of-Words"]
Document 1: 1 1 1 1 1 0 0 0
Document…