Member-only story

15 Process Illustrations for Natural Language Processing Models

btd
21 min readDec 29, 2023

--

In this comprehensive exploration, we delve into various natural language processing (NLP) models, shedding light on their underlying processes through with illustrations.

1. Bag-of-Words (BoW):

  • The Bag-of-Words (BoW) model is a simple and widely used technique in natural language processing (NLP) for representing text data.
  • It treats a document as an unordered set of words, disregarding grammar and word order, and represents the document by counting the frequency of each word.
   Document


┌─────────────┐
│ Token 1 │
└─────────────┘


┌─────────────┐
│ Token 2 │
└─────────────┘

...


┌─────────────┐
│ Token N │
└─────────────┘


┌─────────────┐
│ BoW Vector│
└─────────────┘


Document 1: "This is a simple example."
Document 2: "Another example of Bag-of-Words."

Tokenization:
["This", "is", "a", "simple", "example", "Another", "example", "of", "Bag-of-Words"]

Vocabulary:
["This", "is", "a", "simple", "example", "Another", "of", "Bag-of-Words"]

Word Frequency Count (Document-Term Matrix):
["This", "is", "a", "simple", "example", "Another", "of", "Bag-of-Words"]
Document 1: 1 1 1 1 1 0 0 0
Document…

--

--

btd
btd

No responses yet