Member-only story
The tidymodels
ecosystem in R provides a consistent and modular framework for modeling and machine learning. Here are 100 tips for working with tidymodels
:
1. Installation and Loading:
- Install
tidymodels
withinstall.packages("tidymodels")
. - Load the core
tidymodels
packages withlibrary(tidymodels)
.
2. Create a Simple Model:
- Create a linear regression model with
lm()
or a decision tree withdecision_tree()
. - Use the formula interface for specifying the model formula.
3. Data Splitting:
- Split your data into training and testing sets with
initial_split()
andtraining()
/testing()
. - Utilize
rsample
functions for flexible data splitting.
4. Preprocessing:
- Preprocess data with
recipes
using functions likestep_center()
,step_scale()
. - Create a recipe with
recipe()
and bake it withbake()
.
5. Model Specification:
- Specify a model using
linear_reg()
for linear regression ordecision_tree()
for a decision tree.