PyCaret is a Python library for automated machine learning. Here are 100 tips for working with PyCaret:
1. Basic Setup:
- Install PyCaret with
pip install pycaret
. - Import PyCaret with
from pycaret.classification import *
orfrom pycaret.regression import *
. - Initialize the PyCaret environment with
exp1 = setup(data, target='target_column')
. - View the available pre-processing options with
get_config('X_train')
.
2. Data Exploration:
- Get a summary of the dataset with
compare_models()
. - Visualize the data distribution with
create_model('distribution')
. - Generate an interactive correlation plot with
create_model('correlation')
. - Explore feature importance with
create_model('feature')
. - Evaluate missing values with
missing_diagrams()
.
3. Model Training:
- Train a baseline model with
compare_models()
and choose the best-performing one. - Create an ensemble model with
ensemble_model()
. - Use bagging with
create_model('dt', ensemble=True, method='bagging')
.