Member-only story

Keras: 100 Tips and Techniques for Efficient Deep Learning Model Deployment

btd
4 min readNov 26, 2023

--

Photo by David Jorre on Unsplash

Here are 100 tips for working with Keras, a high-level neural networks API written in Python and capable of running on top of TensorFlow, Theano, or Microsoft Cognitive Toolkit:

1. Basics of Keras:

  1. Import Keras with import keras.
  2. Install Keras using pip install keras.
  3. Use keras.Sequential() to create a linear stack of layers.
  4. Add layers to a model using model.add(layer).
  5. Visualize the model architecture with model.summary().
  6. Compile a model with model.compile(optimizer, loss, metrics).
  7. Use model.fit() to train the model.
  8. Evaluate the model with model.evaluate().
  9. Predict with a trained model using model.predict().

2. Layers and Models:

  1. Use dense layers with keras.layers.Dense(units, activation).
  2. Add dropout to prevent overfitting with keras.layers.Dropout(rate).
  3. Use activation functions like ‘relu’, ‘sigmoid’, or ‘softmax’.
  4. Create a sequential model for a linear stack of layers.
  5. Use functional API for complex…

--

--

btd
btd

No responses yet