Member-only story
Here are 100 tips for working with PyTorch, a popular deep learning framework in Python:
1. Basics of PyTorch:
- Import PyTorch with
import torch
. - Install PyTorch using
pip install torch
. - Create a tensor using
torch.tensor()
. - Convert a NumPy array to a PyTorch tensor with
torch.from_numpy()
. - Check the size of a tensor with
tensor.size()
. - Access the shape of a tensor with
tensor.shape
. - Perform element-wise operations with tensors.
- Use
torch.cuda.is_available()
to check for GPU availability. - Move tensors to the GPU using
tensor.to('cuda')
.
2. Tensor Operations:
- Use
torch.add()
for element-wise addition. - Perform matrix multiplication with
torch.mm()
or@
operator. - Transpose a matrix with
tensor.t()
ortensor.transpose()
. - Reshape a tensor with
tensor.view()
. - Use
torch.unsqueeze()
to add a new dimension to a tensor. - Flatten a tensor with
torch.flatten()
ortensor.view(-1)
.