Member-only story
Here are 100 tips for working with scikit-learn, a popular machine learning library in Python:
Basics of scikit-learn:
- Import scikit-learn with
import sklearn
. - Install scikit-learn using
pip install scikit-learn
. - Access scikit-learn version with
sklearn.__version__
. - Import specific modules from scikit-learn, e.g.,
from sklearn import datasets
. - Use
sklearn.model_selection.train_test_split
for splitting datasets into training and testing sets.
Data Loading and Preprocessing:
- Load built-in datasets with
sklearn.datasets.load_*
. - Explore dataset information with
data.DESCR
for data description. - Handle missing values with
sklearn.impute.SimpleImputer
. - Encode categorical variables with
sklearn.preprocessing.LabelEncoder
orsklearn.preprocessing.OneHotEncoder
. - Scale numerical features using
sklearn.preprocessing.StandardScaler
orsklearn.preprocessing.MinMaxScaler
. - Explore feature statistics with
sklearn.feature_selection
methods.